Math 43 Midterm 3 Review

In addition to the following review questions, you must be able to solve any of the questions from the 3D Lines & Planes handout.

- [1] Consider the vector $\vec{m} = \langle -2, -4 \rangle$, and the vector \vec{n} with direction angle $\frac{2\pi}{3}$ such that $\|\vec{n}\| = 8$.
 - [a] Find a unit vector perpendicular to \vec{m} . (Do <u>NOT</u> use decimal approximations.)
 - [b] Find the direction angle of \vec{m} . (Your answer should be in radians, rounded to 2 decimal places.)
 - [c] Write $2\vec{n} \vec{m}$ as a linear combination of \vec{i} and \vec{j} . (Do **NOT** use decimal approximations.)
- [2] Consider the vectors $\vec{f} = 2\vec{j} 3\vec{k}$ and $\vec{g} = -\vec{i} 3\vec{j} + 4\vec{k}$.
 - [a] Find the angle between \vec{f} and \vec{g} . (Your answer should be in radians, rounded to 2 decimal places.)
 - [b] Find a unit vector perpendicular to both \vec{f} and \vec{g} . (Do <u>NOT</u> use decimal approximations.)
 - [c] Write \vec{f} as the sum of 2 vectors, one parallel to \vec{g} and one perpendicular to \vec{g} . (Do <u>NOT</u> use decimal approximations.)
 - [d] If the terminal point of \vec{g} is (-7, 4, -8), find the initial point.
 - [e] If $\vec{h} = a\vec{i} + b\vec{j} 5\vec{k}$ is parallel to \vec{g} , find the values of a and b.
 - [f] If $\vec{e} = 7\vec{i} + c\vec{j} 5\vec{k}$ is perpendicular to \vec{g} , find the value of c.
- [3] Let P be the point (-5, -2, 3). Let Q be the point (3, 2, -1). Let R be the point (-3, 4, -2). Let \vec{u} be the vector with initial point R and terminal point Q.

Let \vec{w} be the vector with initial point P and terminal point R.

- [a] In which octant is R?
- [b] If you start at point P, move 2 units down, 4 units back, and 6 units to the right, find the co-ordinates of your ending point.
- [c] Write \vec{u} in component form.
- [d] Write \vec{w} as a linear combination of \vec{i} , \vec{j} and \vec{k} .
- [e] Find the magnitude of \vec{w} . (Do <u>NOT</u> use decimal approximations.)
- [f] Find a unit vector in the opposite direction as \vec{w} . (Do <u>NOT</u> use decimal approximations.)
- [g] Find a vector of magnitude 6 in the same direction as \vec{u} . (Do <u>NOT</u> use decimal approximations.)
- [h] If $\|\vec{v}\| = 3$, and the angle between \vec{u} and \vec{v} is 2 radians, find $\vec{u} \cdot \vec{v}$. (Round your answer to 2 decimal places.)
- [i] If $\|\vec{v}\| = 3$, and the angle between \vec{u} and \vec{v} is 2 radians, find the magnitude of $\vec{u} \times \vec{v}$.
 - (Round your answer to 2 decimal places.)
- [j] Find the area of triangle PQR. (Do <u>NOT</u> use decimal approximations.)
- [k] Find $\angle QRP$. (Round your answer to 2 decimal places.)
- [1] If a force represented by the vector $4\vec{i} 5\vec{k}$ is applied to an object as it moves from Q to P, find the work done.
- [m] Find the general equation of the plane passing through P, Q and R.
- [n] Find parametric equations for the line which passes through P and is also parallel to \vec{u} .
- [0] Find symmetric equations for the line which passes through Q and is also perpendicular to the plane -2x-3y+z=9.
- [p] Find the equation of the sphere with P and Q as endpoints of a diameter.
- [4] Which octant or octants contain all points (x, y, z) where xz < 0?
- [5] Consider the sphere $x^2 + y^2 + z^2 4x + 6y + 10z + 29 = 0$.
 - [a] Find the center and radius of the sphere.